Бактериальный рак плодовых растений (Pseudomonas syringae pv. syringae)
Аннотация
Обзорная статья содержит информацию о распространении и основных симптомах бактериального рака – одного из наиболее опасных заболеваний плодовых растений, которое вызывают фитопатогенные бактерии Pseudomonas syringae pv. syringae. Приведены данные о цикле развития, факторах вирулентности и способах идентификации патогена, а также информация о мерах контроля заболевания, в том числе с использованием средств химической и биологической защиты растений. Собраны основные сведения об устойчивости сортов и гибридов к бактериальному раку в естественной среде и условиях in vitro.
Об авторе
В. Ю. ЛагоненкоБеларусь
ул. Ковалёва, 2, аг. Самохваловичи, Минский район, 223013
Список литературы
1. Bultreys, A. Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2 / A. Bultreys, M. Kaluzna // J. of Plant Pathology. – 2010. – Vol. 92 (1). – P. 1.21–1.33.
2. Disease and frost damage of woody plants caused by Pseudomonas syringae: seeing the forest for the trees / J. R. Lamichhane [et al.] // Advances in Agronomy. – 2014. – Vol. 126. – P. 235–295.
3. Jones, A. L. Bacterial canker of sweet cherry in Michigan / A. L. Jones // Plant Disease Rep. – 1971. – Vol. 55. – Р. 961–965.
4. Roos, I. M. M. Bacterial canker of sweet cherry in South Africa / I. M. M. Roos, M. J. Hattingh // Phytophylactica. – 1986. – Vol. 18. – P. 1–4.
5. Canfield, M. L. Isolation of Pseudomonas syringae from 40 cultivars od diseased woody plants with tip dieback in Pacific Northwest nurseries / M. L. Canfield, S. Baca, L. W. Moore // Plant Disease. – 1986. – Vol. 70. – P. 647–650.
6. Determination of the incidence of the different pathovars of Pseudomonas syringae in stone fruits : COST 873 Stone Fruit Nut Health STF Meeting, Skierniewice, Poland, 27–28 March 2008 / Res. inst. of pomology a. floriculture ; ed.: J. Pulawska, A. Bultreys, P. Sobiczewski. – Skierniewice, 2008. – 15 p.
7. Assessment of sweet cherry (Prunus avium L.) genotypes for response to bacterial canker disease / J. Mgbechi-Ezeri [et al.] // Euphytica. – 2017. – Vol. 213. – Art. 145. https://doi.org/10.1007/s10681-017-1930-4
8. Susceptibility of cherries to bacterial canker (Pseudomonas syringae pv. syringae) in field and laboratory / S. Farhadfar [et al.] // Intern. J. of Agriculture a. Forestry. – 2016. – Vol. 6. – P. 20–27.
9. Evaluation of cherry cultivar susceptibility to bacterial canker and leaf spot disease / R. Iličić [et al.] // J. of Phytopathology. – 2018. – Vol. 166, iss. 11–12. – P. 799–808.
10. Thomidis, T. Susceptibility of 30 cherry (Prunus avium) genotypes to the bacterium Pseudomonas syringae pv. syringae / T. Thomidis, E. Exadaktylou // New Zealand J. of Crop a. Horticultural Sci. – 2008. – Vol. 36 (3). – P. 215–220.
11. Roche, M. An in vitro bioassay to evaluate sweet cherry response to inoculation with Pseudomonas syringae pv. syringae / M. Roche, A. N. Azarenko // Acta Horticulturae. – 2005. – Vol. 667. – P. 503–508.
12. Yessad, S. A detached leaf assay to evaluate virulence and pathogenicity of strains of Pseudomonas syringae pv. syringae on pear / S. Yessad, C. Manceau, J. Luisetti // Plant disease. – 1991. – Vol. 76. – P. 370–373.
13. Kaluzna, M. Virulence of Pseudomonas syringae pathovars and races originating from stone fruit trees / M. Kaluzna, P. Sobiczewski // Phytopathologia. – 2009. – Vol. 54. – P. 71–79.
14. Identification and discrimination of Pseudomonas syringae isolates from wild cherry in England / J. G. Vicente [et al.] // Europ. J. of Plant Pathology. – 2004. – Vol. 110. – P. 337–351.
15. Whitesides, S. K. Susceptibility of pear cultivars to blossom blast caused by Pseudomonas syringae / S. K. Whitesides, R. A. Spotts // HortSci. – 1991. – Vol. 26. – P. 880–882.
16. Bacterial canker of sweet cherry in Oregon – infection of horticultural and natural wounds, and resistance of cultivar and rootstock combinations / R. A. Spotts [et al.] // Plant Disease. – 2010. – Vol. 94 (3). – P. 345–350.
17. Григорцевич, Л. Н. Биологические приемы защиты семечковых культур от болезней / Л. Н. Григорцевич // Защита растений. – 1998. – Вып. XXII. – С. 40–45.
18. Коновалова, Н. А. Устойчивость к бактериальному раку (Pseudomonas syringae van Hall) гибридного потомства различных видов груши / Н. А. Коновалова, М. Г. Мялик // Плодоводство : сб. науч. тр. / Белорус. науч.-исслед. ин-т плодоводства ; редкол.: В. А. Самусь (гл. ред.) [и др.]. – Минск, 1994. – Т. 9, ч. 1. – С. 22–29.
19. Копиця, В. Н. Раковые заболевания скелетных частей яблони в Беларуси / В. Н. Копиця // Изв. Акад. аграр. наук Респ. Беларусь. – 1997. – № 4. – С. 58–62.
20. Roche, M. M. Development of an in vitro and modification of an in vivo bioassay to screen cherry genotypes for response to inoculation with Pseudomonas syringae pv. syringae : thesis … master of sci. in horticulture / M. M. Roche. – Oregon State Univ., 2001. – 63 p.
21. Garret, C. M. E. Influence of rootstock on the susceptibility of sweet cherry scions to bacterial canker, caused by Pseudomonas syringae pvs morsprunorum and syringae / C. M. E. Garret // Plant Pathology. – 1986. – Vol. 35 (1). – P. 114–119.
22. Григорцевич, Л. Н. Распространение и вредоносность бактериального рака плодовых культур в условиях Белоруссии / Л. Н. Григорцевич // Плодоводство : межведомств. темат. сб. / Белорус. науч.-исслед. ин-т картофелеводства и плодоовощеводства ; редкол.: Н. А. Дорожкин (гл. ред.) [и др.]. – Минск, 1974. – Вып. 2. – С. 121–124.
23. Коновалова, Н. А. Оценка коллекции сортов груши на устойчивость к заболеваниям / Н. А. Коновалова, М. Г. Мялик // Плодоводство : межведомств. темат. сб. / Белорус. науч.-исслед. ин-т картофелеводства и плодоовощеводства ; редкол.: А. В. Кругляков (гл. ред.) [и др.]. – Минск, 1983. – Вып. 5. – С. 73–78.
24. Sulikowska, M. Pseudomonas spp. isolated from stone fruit trees in Poland / M. Sulikowska, P. Sobiczewski // Zemdirbyste-Agriculture. – 2008. – Vol. 95, № 3. – P. 166–170.
25. Hirano, S. S. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte / S. S. Hirano, C. D. Upper // Microbiology a. molecular biology rev. – 2000. – Vol. 64, № 3. – P. 624–653.
26. Pseudomonas syringae: an overview and its future as a ‘rain making bacteria’ / P. Manohar [et al.] // Intern. Res. J. of Biological Sci. – 2015. – Vol. 4 (2). – P. 70–77.
27. Cameron, H. R. Disease of deciduous fruit trees incited by Pseudomonas syringae van Hall : techn. bull. / H. R. Cameron. – Corvallis : Oregon State Univ., Agricultural Experiment Station, 1962. – Vol. 66. – 64 p.
28. Crosse, J. E. Epidemiological relations of the Pseudomonad pathogens of deciduous fruit trees / J. E. Crosse // Annu. Rev. of Phytopathology. – 1966. – Vol. 4. – P. 291–310.
29. Konavko, D. Pseudomonas syringae as important pathogen of fruit trees with emphasis on plum and cherry / D. Konavko, I. Moročko-Bičevska, B. Bankina // Research for rural development : annu. 20th intern. sci. conf. proc., Jelgava, 23–25 May 2014 / Latvia Univ. of Agriculture ; ed. Z. Gaile [et al.]. – Jelgava, 2014. – Vol. 1. – P. 19–25.
30. Specifics of pesticides effects on the phytopathogenic bacteria / V. Patyka [et al.] // Ecological Chemistry a. Engineering S. – 2016. – Vol. 23. – P. 311–331.
31. Григорцевич, Л. Н. Грибные и бактериальные микроорганизмы – возбудители раковых болезней плодовых культур / Л. Н. Григорцевич // Тр. БГТУ. № 1. Лесное хоз-во. – 2011. – № 19. – С. 202–204.
32. Григорцевич, Л. Н. Обоснование и разработка биологических приемов защиты сада от болезней / Л. Н. Григорцевич // Актуальные вопросы теории и практики защиты плодовых и ягодных культур от вредных организмов в условиях многоукладности сельского хозяйства : тез. докл. Всерос. совещ., Загорье, 3–6 марта 1998 г. / Всерос. селекц.-технол. ин-т садоводства и питомниководства. – М., 1998. – С. 188–190.
33. Etiology of bacterial canker on young sweet cherry trees in Serbia / J. Balaž [et al.] // J. of Plant Pathology. – 2016. – Vol. 98. – P. 285–294.
34. Janse, J. D. Occurrence of Pseudomonas syringae pathovars in stone fruits in the Netherlands and availability of strains from different hosts of this pathogen / J. D. Janse, A. van Beuningen, M. Wenneker // Determination of the incidence of the different pathovars of Pseudomonas syringae in stone fruits : COST 873 Stone Fruit Nut Health STF Meeting, Skierniewice, Poland, 27–28 March 2008 / Res. inst. of pomology a. floriculture ; ed.: J. Pulawska, A. Bultreys, P. Sobiczewski. – Skierniewice, 2008. – P. 7.
35. Григорцевич, Л. Н. Защитные мероприятия против раковых болезней в саду / Л. Н. Григорцевич // Земляробства i ахова раслiн. – 2008. – № 6. – С. 50–51.
36. CABI : Invasive species compendium [Electronic resource] . – Mode of access: https://www.cabi.org. – Date of access: 08.09.2022.
37. Öksel, C. Identification of causal agent(s) of cherry bacterial canker in Marmara region of Turkey / C. Öksel, M. Mirik // Current Trends in Natural Sci. – 2021. – Vol. 10, iss. 19. – P. 368–374.
38. Phenotypic and genetic characterization of Pseudomonas syringae strains associated with the recent citrus bacterial blast and bacterial black pit epidemics in Tunisia / Е. Abdellatif [et al.] // Plant Pathology. – 2016. – Vol. 66, iss. 7. – P. 1081– 1093.
39. First report of citrus bacterial blast and citrus black pit caused by Pseudomonas syringe pv. syringae in Tunisia / Е. Abdellatif [et al.] // New Disease Rep. – 2015. – Vol. 32, iss. 1. – P. 35.
40. Scortichini, M. Severe outbreak of Pseudomonas syringae pv. syringae on new apricot cultivars in Central Italy / M. Scortichini // J. of Plant Pathology. – 2006. – Vol. 88. – P. 65–70.
41. Kotan, R. First record of bacterial canker caused by Pseudomonas syringae pv. syringae, on apricot trees in Turkey / R. Kotan, F. Sahin // Plant Pathology. – 2002. – Vol. 51. – P. 798.
42. Gutiérrez-Barranquero, J. A. Pseudomonas syringae pv. syringae associated with mango trees, a particular pathogen within the ‘Hodgepodge’ of the Pseudomonas syringae сomplex / J. A. Gutiérrez-Barranquero, F. M. Cazorla, A. de Vicente // Frontiers in Plant Sci. – 2019. – Vol. 10. – Art. 570. https://doi.org/10.3389/fpls.2019.00570
43. Using multilocus sequence analysis to distinguish pathogenic from saprotrophic strains of Pseudomonas from stone fruit and kiwifruit / S. B. Visnovsky [et al.] // Europ. J. of Plant Pathology. – 2019. – Vol. 155. – P. 643–658.
44. Clarification of taxonomic status within the Pseudomonas syringae species group based on a phylogenomic analysis / M. Gomila [et al.] // Frontiers in Microbiology. – 2017. – Vol. 8. – Art. 2422. https://doi.org/10.3389/fmicb.2017.02422
45. Young, J. M. Taxonomy of Pseudomonas syringae / J. M. Young // J. of Plant Pathology. – 2010. – Vol. 92 (1). – P. 1.5–1.14.
46. Bacteria from four phylogroups of the Pseudomonas syringae complex can cause bacterial canker of apricot / L. Parisi [et al.] // Plant Pathology. – 2019. – Vol. 68, iss. 7. – P. 1249–1258.
47. Genetic characterization and prevalence of Pseudomonas syringae strains from sweet cherry orchards in New Zealand / V. Marroni [et al.] // Plant Pathology. – 2023. – Vol. 72 (9). – P. 1673–1686.
48. EPPO A1 and A2 lists of pests recommended for regulation as quarantine pests : EPPO Standards [Electronic resource]. – Mode of access: https://www.eppo.int/media/uploaded_images/ACTIVITIES/plant_quarantine/pm1-002-28-en.pdf. – Date of access: 23.08.2023.
49. Pseudomonas syringae pv. actinidiae, P. syringae and P. viridiflava on kiwifruit : PP 1/282 (2). – EPPO Bull. – Vol. 49. – 2018. – P. 25–27.
50. Characterisation of the pathogenicity of strains of Pseudomonas syringae towards cherry and plum / M. T. Hulin [et al.] // Plant Pathology. – 2018. – Vol. 67, № 5. – P. 1177–1193.
51. Agrios, G. N. Plant Pathology / G. N. Agrios. – 5th ed. – Burlington : Elsevier Acad. Press, 2005. – 919 p.
52. Pseudomonas syringae diseases of fruit trees: progress toward understanding and control / M. M. Kennelly [et al.] // Plant Disease. – 2007. – Vol. 91, № 1. – P. 4–17.
53. Scortichini, M. Bacterial canker and decline of European hazelnut / M. Scortichini // Plant Disease. – 2002. – Vol. 86, № 7. – P. 704–709.
54. Nasab, M. O. First report of Pseudomonas syringae pv. syringae causing leaf scorch on Satureja khuzestanica in Iran / M. O. Nasab, G. Khodakaramian, M. Aeini // J. of Plant Pathology. – 2022. – Vol. 104. – P. 847–848.
55. Pseudomonas syringae pv. syringae as the new causal agent of cabbage leaf blight / E. Basavand [et al.] / J. of Phytopathology. – 2021. – Vol. 169, iss. 4. – P. 253–259.
56. Kałużna, M. Characterization and phylogeny of the novel taxon of Pseudomonas spp., closely related to Pseudomonas avellanae as causal agent of a bacterial leaf blight of cornelian cherry (Cornus mas L.) and Pseudomonas syringae pv. syringae as a new bacterial pathogen of red dogwood (Cornus sanguinea L.) / M. Kałużna // J. of Plant Pathology. – 2018. – Vol. 101 (7). https://doi.org/10.1007/s42161-018-0189-5
57. Characterization and genetic diversity of Pseudomonas syringae pv. syringae isolates associated with rice bacterial leaf spot in Heilongjiang, China / L. Peng [et al.] // Biology. – 2022. – Vol. 11 (5). – Art. 720. https://doi.org/10.3390/biology11050720
58. First report of shot-hole on flowering cherry caused by Burkholderia contaminans and Pseudomonas syringae pv. syringae / V.-C. Han [et al.] // Plant Disease. – 2021. – Vol. 105 (12). – P. 3795–3802.
59. First report of the bacterial leaf spot caused by Pseudomonas syringae on grapevine (Vitis vinifera) in Russia / E. V. Porotikova [et al.] // Plant disease. – 2016. – Vol. 101 (2). – P. 380.
60. Григорцевич, Л. Н. Защита плодовых деревьев от болезней в садах интенсивного типа : метод. указания для изучения дисциплины «Основы плодоводства и огородничества» для студентов специальности 1-75 02 01 «Садовопарковое строительство» / Л. Н. Григорцевич. – Минск : Изд. БГТУ, 2010. – 40 c.
61. Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dome : major groups and growth abilities at low temperatures / P. Amato [et al.] // FEMS Microbiology Ecology. – 2007. – Vol. 59 (2). – P. 242–254.
62. Behrendt, U. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. / U. Behrendt, A. Ulrich, P. Schumann // Intern. J. of Systematic a. Evolutionary Microbiology. – 2003. – Vol. 53 (5). – P. 1461–1469.
63. Information on peach bacterial canker in Aegean region of Turkey / H. Ozaktan [et al.] // Determination of the incidence of the different pathovars of Pseudomonas syringae in stone fruits : COST 873 Stone Fruit Nut Health STF Meeting, Skierniewice, Poland, 27–28 March 2008 / Res. inst. of pomology a. floriculture ; ed.: J. Pulawska, A. Bultreys, P. Sobiczewski. – Skierniewice, 2008. – P. 8.
64. Existence of Pseudomonas syringae pv. syringae in mango grooves of southern Punjab Pakistan reveals an emerging threat of apical necrosis due to climate change / A. Abdullah [et al.] // Fresenius Environmental Bull. – 2021. – Vol. 30, № 06A. – P. 6679–6690.
65. Comparative genomics of Pseudomonas syringae pv. syringae strains B301D and HS191 and insights into intrapathovar traits associated with plant pathogenesis / A. Ravindran [et al.] // MicrobiologyOpen. – 2015. – Vol. 4, № 4. – P. 553–573.
66. Akbaba, M. Evaluation of bacteriophages in the biocontrol of Pseudomonas syringae pv. syringae isolated from cankers on sweet cherry (Prunus avium L.) in Turkey / M. Akbaba, H. Ozaktan // Egyp. J. of Biological Pest Control. – 2021. – Vol. 31. https://doi.org/10.1186/s41938-021-00385-7
67. Pseudomonas syringae causing bacterial canker on apple trees in Brazil / L. Araujo [et al.] // Plant protection. – 2020. – Vol. 79, № 4. – P. 592–598.
68. Field evaluation of treatments for the control of the bacterial apical necrosis of mango (Mangifera indica) caused by Pseudomonas syringae pv. syringae / F. M. Cazorla [et al.] // Europ. J. of Plant Pathology. – 2006. – Vol. 116 (4). – P. 279–288.
69. Григорцевич, Л. Н. Основы плодоводства : учеб. пособие / Л. Н. Григорцевич, Ю. М. Полещук, А. И. Блинцов. – Минск : БГТУ, 2004. – 90 с.
70. Kannan, V. R. Plant pathogenic bacteria : an overview / V. R. Kannan, K. K. Bastas, R. A. Arokiaswamy // Sustainable approaches to controlling plant pathogenic bacteria / ed. V. R. Kannan, K. K. Bastas. – Boca Raton, 2016. – Ch. 1. – P. 1–16.
71. Kunkel, B. N. Virulence strategies of plant pathogenic bacteria / B. N. Kunkel, Zh. Chen // The Procaryotes / ed.: M. Dworkin (ed.-in-chief) [et al.]. – New York, 2006. – Vol. 2. Ecophysiology and Biochemistry. – Ch. 1.14. – P. 421–440.
72. Phytotoxic properties of Pseudomonas syringae pv. syringae toxins / N. S. Iacobellis [et al.] // Physiological and Molecular Plant Pathology. – 1992. – Vol. 40, iss. 2. – P. 107–116.
73. Antimicrobial lipodepsipeptides from Pseudomonas spp: a comparison of their activity on model membranes / G. Menestrina [et al.] // Pseudomonas syringae and related pathogens. Biology and genetic : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 185–198.
74. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis / B. K. Scholz-Schroeder [et al.] // Molecular Plant-Microbe Interactions. – 2001. – Vol. 14, № 3. – P. 336–348.
75. Fungicidal activities and mechanisms of action of Pseudomonas syringae pv. syringae lipodepsipeptide syringopeptins 22A and 25A / M. F. Bensaci [et al.] // Frontiers in Microbiology. – 2011. – Vol. 2. – Art. 216. https://doi.org/10.3389/fmicb.2011.00216
76. Hutchison, M. L. Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant pathogen interaction / M. L. Hutchison, M. A. Tester, D. C. Gross // Molecular Plant-Microbe Interactions. – 1995. – Vol. 8, № 4. – P. 610–620.
77. Buongiorno, D. Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers / D. Buongiorno, G. D. Straganz // Coordination Chemistry Rev. – 2013. – Vol. 257, № 2. – P. 541–563.
78. Isolation and characterization of Pseudomonas syringae isolates afecting stone fruits and almond in Montenegro / T. Popović [et al.] // J. of Plant Diseases a. Protection. – 2021. – Vol. 128 (17). – P. 391–405.
79. An antimetabolite toxin (mangotoxin) is produced by Pseudomonas syringae pv. syringae isolated from mango / F. M. Cazorla [et al.] // Pseudomonas syringae and related pathogens. Biology and genetic : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 175–184.
80. Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity / L. Harrison [et al.] // J. of Gen. Microbiology. – 1991. – Vol. 137 (12). – P. 2857–2865.
81. Bender, C. L. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases / C. L. Bender, F. Alarcón-Chaidez, D. C. Gross // Microbiology a. molecular biology rev. – 1999. – Vol. 63, № 2. – P. 266–292.
82. Bultreys, A. Biological and molecular detection of toxic lipodepsipeptide producing Pseudomonas syringae strains and PCR identification in plants / A. Bultreys, I. Gheysen // Appl. a. Environmental Microbiology. – 1999. – Vol. 65, № 5. – P. 1904–1909.
83. Interaction between nitrogen-fertilized peach trees and expression of syrB, a gene involved in syringomycin production in Pseudomonas syringae pv. syringae / T. Cao [et al.] // Phytopathology. – 2005. – Vol. 95, № 5. – P. 581–586.
84. Бандурко, И. А. Сортоизучение и селекция груши : учеб. пособие для аспирантов с.-х. направления / И. А. Бандурко. – Майкоп : МГТУ, 2016. – 132 с.
85. Mo, Y.-Y. Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae / Y.-Y. Mo, D. C. Gross // J. of Bacteriology. – 1991. – Vol. 173, № 18. – P. 5784– 5792.
86. Cherry picking by pseudomonads: After a sentury of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits / M. T. Hulin [et al.] // Plant Pathology. – 2020. – Vol. 69 (6). – P. 962–978.
87. Quigley, N. B. Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules / N. B. Quigley, D. C. Gross // Molecular Plant-Microbe Interactions. – 1994. – Vol. 7, № 1. – P. 78–90.
88. Screening wild cherry (Prunus avium) for resistance to bacterial canker by laboratory and field tests / F. Santi [et al.] // Forest Pathology. – 2004. – Vol. 34, № 6. – P. 349–362.
89. Sayler, R. J. The effect of copper sprays and fertilization on bacterial canker in French prune / R. J. Sayler, B. C. Kirkpatrick // Canad. J. of Plant Pathology. – 2003. – Vol. 25. – P. 406–410.
90. Scholz-Schroeder, B. K. The sypA, sypB, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D / B. K. Scholz-Schroeder, J. D. Soule, D. C. Gross // Molecular Plant-Microbe Interactions. – 2003. – Vol. 16, № 4. – P. 271–280.
91. Helmann, T. C. Genome-wide identification of Pseudomonas syringae genes required for fitness during colonization of the leaf surface and apoplast / T. C. Helmann, A. M. Deutschbauer, S. E. Lindow // Proc. of the Nat. Acad. of Sci. of the USA. – 2019. – Vol. 116, № 38. – P. 18900–18910.
92. Bensaci, M. F. The bioactive properties of syringomycin e-rhamnolipid mixtures and syringopeptins : diss. … dr of philosophy in biology / M. F. Bensaci. – Logan, Utah, 2009. – 173 p.
93. Interaction of syringomycin E structural analogues with biological and model membranes / M. Dalla Serra [et al.] // Pseudomonas syringae and related pathogens : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 207–215.
94. A nonribosomal peptide synthetase gene (mgoA) of Pseudomonas syringae pv. syringae is involved in mangotoxin biosynthesis and is required for full virulence / E. Arrebola [et al.] // Molecular Plant-Microbe Interactions. – 2007. – Vol. 20, № 5. – P. 500–509.
95. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae / M. S. H. Hwang [et al.] // Appl. a. Environmental Microbiology. – 2005. – Vol. 71, № 9. – P. 5182–5191.
96. Mangotoxin: a novel antimetabolite toxin produced by Pseudomonas syringae inhibiting ornithine/arginine biosynthess / E. Arrebola [et al.] // Physiological and Molecular Plant Pathology. – 2003. – Vol. 63. – P. 117–127.
97. Methylome response to proteasome inhibition by Pseudomonas syringae virulence factor Syringolin A / D. M. V. Bonnet [et al.] // Molecular Plant-Microbe Interactions. – 2023. – Vol. 36 (11). – P. 693–704.
98. Schellenberg, B. Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition / B. Schellenberg, C. Ramel, R. Dudler // Molecular Plant-Microbe Interactions. – 2010. – Vol. 23 (10). – P. 1287– 1293.
99. Cody, Y. S. Characterization of pyoverdinpss, the fluorescent siderophore produced by Pseudomonas syringae pv. syringae / Y. S. Cody, D. C. Gross // Appl. a. Environmental Microbiology. – 1987. – Vol. 53, № 5. – P. 928–934.
100. RNA-seq analysis reveals that an ECF σ factor, AcsS, regulates achromobactin biosynthesis in Pseudomonas syringae pv. syringae B728a / J. W. Greenwald [et al.] // PLoS ONE. – 2012. – Vol. 7, iss. 4. – Art. e34804. https://doi.org/10.1371/journal.pone.0034804
101. Горшков, В. Ю. Бактериозы растений: молекулярные основы формирования растительно-микробных патосистем / В. Ю. Горшков. – Казань: Изд-во Сергея Бузукина, 2017. – 304 с.
102. Биологическая защита растений / М. В. Штерншис [и др.] ; под ред. М. В. Штерншис. – М. : Колос, 2004. – 264 с.
103. Doksöz, S. F. Biological control of Pseudomonas savastanoi pv. savastanoi causing the olive knot disease with epiphytic and endophytic bacteria / S. F. Doksöz, İ. A. Bozkurt // J. of Plant Pathology. – 2021. – № 104 (6). – P. 65–78.
104. Loper, J. E. Lack of evidence for in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surface / J. E. Loper, S. E. Lindow // Ecology a. Epidemiology. – 1987. – Vol. 77, № 10. – P. 1449–1454.
105. Embaby, A. M. Unusual non-fluorescent broad spectrum siderophore activity (SID EGYll) by Pseudomonas aeruginosa strain EGYll DSM 101801 and a new insight towards simple siderophore bioassay / A. M. Embaby, Y. Heshmat, A. Hussein // AMB Express. – 2016. – Vol. 6 (1). – Art. 26. https://doi.org/10.1186/s13568-016-0192-1
106. The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection / F. Taguchi [et al.] // J. of Bacteriology. – 2010. – Vol. 191, № 1. – P. 117–126.
107. Berti, A. D. Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a / A. D. Berti, M. G. Thomas // J. of Bacteriology. – 2009. – Vol. 191, № 14. – P. 4594–4604.
108. Bioinformatics analysis of the complete genome sequence of the mango tree pathogen Pseudomonas syringae pv. syringae UMAF0158 reveals traits relevant to virulence and epiphytic lifestyle / P. M. Martínez-García [et al.] // PLoS ONE. – 2015. – 10. – Art. e0136101. https://doi.org/10.1371/journal.pone.0136101
109. Блажевич, О. В. Металлсвязывающая способность флуоресцирующих пигментов бактерий рода Pseudomonas / О. В. Блажевич, Н. П. Максимова // Микробиология и биотехнология на рубеже XXI столетия : материалы Междунар. конф., посвящ. 25-летию Ин-та микробиологии НАН Беларуси, Минск, 1–2 июня 2000 г. / Нац. акад. наук Беларуси [и др.] ; отв. ред.: А. Г. Лобанок, Л. И. Стефанович. – Минск, 2000. – С. 25–26.
110. Lamichhane, J. R. A new medium for the detection of fluorescent pigment production by pseudomonads / J. R. Lamichhane, L. Varvaro // Plant Pathology. – 2012. – Vol. 62, № 3. – P. 624–632.
111. Bultreys, A. Diversity among Pseudomonas syringae strains from Belgian orchards / A. Bultreys, I. Gheysen // Pseudomonas syringae and related pathogens. Biology and genetic : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 69–77.
112. Микробные сидерофоры: строение, свойства и функции / В. В. Леонов [и др.] // Астрах. мед. журн. – 2016. – Т. 11, № 4. – С. 24–37.
113. King, E. O. Two simple media for the demonstration of pyocyanin and fluorescin / E. O. King, M. K. Ward, D. E. Raney // J. of Laboratory and Clinical Medicine. – 1954. – Vol. 44, № 2. – P. 301–307.
114. Waturangi, S. D. E. Distribution of ice nucleation active (INA) bacteria from rain-water and air / S. D. E. Waturangi // HAYATI J. of Biosci. – 2011. – Vol. 18, № 3. – P. 108–112.
115. Toward understanding bacterial ice nucleation / M. Lukas [et al.] // The J. of physical chemistry B. – 2022. – Vol. 126. – P. 1861–1867.
116. Araujo, G. G. Survival and ice nucleation activity of Pseudomonas syringae strains exposed to simulated high-altitude atmospheric conditions / G. G. de Araujo [et al.] // Sci. Rep. – 2019. – Vol. 9. – Art. 7768. https://doi.org/10.1038/s41598-019-44283-3
117. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle / C. E. Morris [et al.] // The ISME J. – 2008. – Vol. 2. – P. 321–334.
118. Xin, X.-F. Pseudomonas syringae: what it takes to be a pathogen / X.-F. Xin, B. Kvitko, S. Y. He // Nature Rev. Microbiology. – 2018. – Vol. 16, № 5. – P. 316–328.
119. Гулевский, А. К. Белки-нуклеаторы бактериального происхождения. Регуляция активности и значение в природе и биотехнологии / А. К. Гулевский, Л. И. Релина // Теорет. и эксперим. криобиология. – 2010. – Т. 20, № 3. – С. 225–234.
120. Biophysical characterization of soluble Pseudomonas syringae ice nucleation protein InaZ fragments / Y. J. Han [et al.] // Intern. J. of Biological Macromolecules. – 2017. – Vol. 94. – P. 634–641.
121. Lindow, S. E. The role of bacterial ice nucleation in frost injury to plants / S. E. Lindow // Annu. Rev. of Phytopathology. – 1983. – Vol. 21. – P. 363–384.
122. First report of Pseudomonas syringae pv. syringae associated with bacterial blossom blast on apple (Malus pumila) in the United States / K. Gasic [et al.] // Plant disease. – 2018. – Vol. 102, № 9. – P. 1848.
123. Molecular epidemiology of Pseudomonas syringae pv. syringae causing bacterial leaf spot of watermelon and squash in Florida / E. A. Newberry [et al.] // Plant disease. – 2018. – Vol. 102. – P. 511–518.
124. Pseudomonas syringae Hrp type III secretion system and effector proteins / A. Collmer [et al.] // Proc. of the Nat. Acad. of Sci. of the USA. – 2000. – Vol. 97, № 16. – P. 8770–8777.
125. Block, A. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? / A. Block, J. R. Alfano // Current Opinion in Microbiology. – 2011. – Vol. 14. – P. 39–46.
126. HopH1 effectors of Pseudomonas syringae pv. tomato DC3000 and pv. syringae B728a induce HR cell death in non-host eggplant Solanum torvum / K. Nahar [et al.] // J. of General Plant Pathology. – 2021. – Vol. 87. – P. 24–29.
127. Regulation and detection of effectors translocated by Pseudomonas syringae / S. W. Hutcheson [et al.] // Pseudomonas syringae and related pathogens. Biology and genetic : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 147–156.
128. Lelliott, R. A. A determinative scheme for the fluorescent plant pathogenic Pseudomonas / R. A. Lelliott, E. Billing, A. C. Hayward // J. of Appl. Bacteriology. – 1966. – Vol. 29, № 3. – P. 470–489.
129. Copper as signal for alginate synthesis in Pseudomonas syringae pv. syringae / S. P. Kidambi [et al.] // Appl. a. Environmental Microbiology. – 1995. – Vol. 61, № 6. – P. 2172–2179.
130. AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae / A.Peñaloza-Vázquez [et al.] // Microbiology. – 2004. – Vol. 150. – P. 2727–2737.
131. Biological role of EPS from Pseudomonas syringae pv. syringae UMAF0158 extracellular matrix, focusing on a Psl like polysaccharide / Z. Heredia-Ponce [et al.] // NPJ Biofilms a. Microbiomes. – 2020. – Vol. 6 (1). – Art. 37. https://doi.org/10.1038/s41522-020-00148-6
132. Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae / J. Yu [et al.] // Molecular microbiology. – 1999. – Vol. 33, № 4. – P. 712–720.
133. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae / H. Laue [et al.] // Microbiology. – 2006. – Vol. 152. – P. 2909–2918.
134. Pseudomonas syringae addresses distinct environmental challenges during plant infection through the coordinated deployment of polysaccharides / P. S. Krishna [et al.] // J. of Experimental Botany. – 2022. – Vol. 73, № 7. – P. 2206–2221.
135. Expression of extra-cellular levansucrase in Pseudomonas syringae is controlled by the in planta fitness-promoting metabolic repressor HexR / A. Mehmood [et al.] // BMC Microbiology. – 2015. – Vol. 15. – Art. 48. https://doi.org/10.1186/s12866-015-0349-0
136. Complete genome assembly of the levan-positive strainPVFi1 of Pseudomonas savastanoi pv. savastanoiisolated from olive knots in Central Italy / S. Turco [et al.] // Environmental Microbiology Rep. – 2022. – Vol. 14. – Art. 2. https://doi.org/10.1111/1758-2229.13048
137. Li, H. Characterization and mutational analysis of three allelic lsc genes encoding levansucrase in Pseudomonas syringae / H. Li, M. S. Ullrich // J. of Bacteriology. – 2001. – Vol. 183. – Art. 11. – P. 3282–3292.
138. Phytobacteriology : principles and practice / ed. J. D. Janse. – Cambridge : CABI, 2005. – 366 p.
139. Gross, M. Demonstration of levan and alginate in bean plants (Phaseolus vulgaris) infected by Pseudomonas syringae pv. phaseolicola / M. Gross, K. Rudolph // J. of Phytopathology. – 1987. – Vol. 120, iss. 1. – P. 9–19.
140. Желдакова, Р. А. Фитопатогенные микроорганизмы : учеб.-метод. комплекс / Р. А. Желдакова, В. Е. Мямин. – Минск : БГУ, 2006. – 116 c.
141. Ertimurtaş, D. Classical and molecular diagnosis of Pseudomonas syringae pathovars causing bacterial canker on stone fruits / D. Ertimurtaş, H. Özaktan // J. of Turkish Phytopathology. – 2020. – Vol. 49, № 3. – P. 55–61.
142. Diversity, pathogenicity and biocontrol efficacy of Pseudomonas syringae isolated from plants in northern Jordan / F. A. Almomani [et al.] // Romanian Biotechnological Letters. – 2022. – Vol. 27, № 1. – P. 3264–3269.
143. Rapid evaluation of pathogenicity in Pseudomonas syringae pv. syringae with a lilac tissue culture bioassay and syringomycin DNA probes / H. J. Scheck [et al.] // Plant Disease. – 1997. – Vol. 81, № 8. – P. 905–910.
144. Pseudomonas syringae pv. syringae from cool climate Australian grapevine vineyards: new phylogroup PG02f associated with bacterial inflorescence rot / S. J. Hall [et al.] // Plant Pathology. – 2019. – Vol. 68, iss. 2. – P. 312–322.
145. Lindow, S. E. Bacterial ice nucleation: a factor in frost injury to plants / S. E. Lindow, D. C. Arny, C. D. Upper // Plant Physiology. – 1982. – Vol. 70. iss. 4. – P. 1084–1089.
146. Identification of genes involved in the glycosylation of modified viosamine of flagellins in Pseudomonas syringae by mass spectrometry / M. Yamamoto [et al.] // Genes. – 2011. – Vol. 2. – P. 788–803.
147. Polysaccharides of pseudomonas pathovar strains that infect pea, tomato, and soya bean / S. Datta [et al.] // Current microbiology. – 2004. – Vol. 49, № 1. – P. 35–41.
148. Diversity of pathogenic Pseudomonas isolated from citrus in Tunisia / M. Oueslati [et al.] // AMB Express. – 2020. – Vol. 10. – Art. 198. https://doi.org/10.1186/s13568-020-01134-z
149. Jagannadham, M. V. Identification of outer membrane proteins from an Antarctic bacterium Pseudomonas syringae Lz4W / M. V. Jagannadham, E. F. Abou-Eladab, H. M. Kulkarni // Molecular & Cellular Proteomics. – 2011. – Vol. 10, iss. 6. https://doi.org/10.1074/mcp.M110.004549
150. Афанасьев, М. В. MALDI-ToF масс-спектрометрический анализ для идентификации возбудителей чумы, холеры и туляремии / М. В. Афанасьев, Л. В. Миронова, С. В. Балахонов // Молекуляр. генетика, микробиология и вирусология. – 2015. – № 2. – С. 3–8.
151. Sorensen, K. N. PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains / K. N. Sorensen, K.-H. Kim, J. Y. Takemoto // Appl. a. Environmental Microbiology. – 1998. – Vol. 64, № 1. – P. 226–230.
152. Quigley, N. B. SyrD is required for syringomycin production by Pseudomonas syringae pathovar syringae and is related to a family of ATP-binding secretion proteins / N. B. Quigley, Y.-Y. Mo, D. C. Gross // Molecular Microbiology. – 1993. – Vol. 9, № 4. – P. 787–801.
153. Khezri, M. Identification and characterization of Pseudomonas syringae pv. syringae strains from various plants and geographical regions / M. Khezri, M. Mohammadi // J. of Plant Protection Res. – 2018. – Vol. 58, № 4. – P. 354–361.
154. Doolotkeldieva, T. Characterization of Pseudomonas syringae pv. syringae from diseased stone fruits in Kyrgyzstan and testing of biological agents against pathogen / T. Doolotkeldieva, S. Bobusheva // Intern. J. of Phytopathology. – 2020. – Vol. 9, № 2. – P. 71–91.
155. Kerkoud, M. Rapid diagnostic of Pseudomonas syringae pv. papulans, the causal agent of blister spot of apple, by polymerase chain reaction using specifically designed hrpL gene primers / M. Kerkoud, C. Manceau, J. P. Paulin // Phytopathology. – 2002. – Vol. 92, № 10. – P. 1077–1083.
156. Попкова, К. В. Общая фитопатология : учеб. для вузов / К. В. Попкова. – 2-е изд., перераб. и доп. – М. : Дрофа, 2005. – 445 с.
157. Valencia-Botin, A. J. Review of the studies and interactions of Pseudomonas syringae pathovars on wheat / A. J. Valencia-Botin, M. E. Cisneros-López // Intern. J. of Agronomy. – 2012. – Vol. 2012, iss. 1. – Art. 692350. https://doi.org/10.1155/2012/692350
158. Чувствительность фитопатогенных бактерий Erwinia amylovora и Pseudomonas syringae к медьсодержащим фунгицидам / А. А. Джаймурзина [и др.] // Защита картофеля. – 2014. – № 2. – С. 33–35.
159. Голышин, Н. М. Фунгициды / Н. М. Голышин. – М. : Колос, 1993. – 319 с.
160. Bender, C. L. Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance / C. L. Bender, D. A. Cooksey // J. of Bacteriology. – 1986. – Vol. 165, № 2. – P. 534–541.
161. Streptomycin resistance of Pseudomonas syringae pv. papulans in apple orchards and its association with a conjugative plasmid / T. J. Burr [et al.] // Phytopathology. – 1988. – Vol. 78, № 4. – P. 410–413.
162. Copper Resistance in Pseudomonas syringae strains isolated from mango is encoded mainly by plasmids / F. M. Cazorla [et al.] // Phytopathology. – 2002. – Vol. 92, № 8. – P. 909–916.
163. Characterization of Pseudomonas syringae pv. syringae isolated from mango in Sicily and occurrence of copper-resistant strains / D. Aiello [et al.] // J. of Plant Pathology. – 2015. – Vol. 97, № 2. – P. 273–282.
164. Tarakanov, R. I. Genetic and phenotypical diversity of Pseudomonas syringae population in the Russian Federation / R. I. Tarakanov, A. N. Ignatov, F. S.-U. Dzhalilov // Brazilian J. of Biology. – 2022. – Vol. 84. – Art. e264224. https://doi.org/10.1590/1519-6984.264224
165. Spotts, R. A. Copper, oxy tetracycline, and streptomycin resistance of Pseudomonas syringae pv. syringae strains from pear orchards in Oregon and Washington / R. A. Spotts, L. A. Cervantes // Plant Disease. – 1995. – Vol. 79, № 11. – P. 1132–1135.
166. Epiphytic fitness of Pseudomonas syringae pv. syringae on mango trees is increased by 62-Kb plasmids / F. M. Cazorla [et al.] // Pseudomonas syringae and related pathogens. Biology and genetic : conf. proc. / ed.: N. S. Iacobellis [et al.]. – Dordrecht, 2003. – P. 79–88.
167. Copper-tolerance in Pseudomonas syringae pv. tomato and Xanthomonas spp. and the control of diseases associated with these pathogens in tomato and pepper. A systematic literature review / K. Griffin [et al.] // Crop protection. – 2017. – Vol. 96. – P. 144–150.
168. Huang, T. C. Characterization of plasmids that encode streptomycin resistance in bacterial epiphytes of apple / T. C. Huang, T. J. Burr // J. of Appl. Microbiology. – 1999. – Vol. 86 (5). – P. 741–751.
169. Cameron, A. Pseudomonas syringae pv. actinidiae: chemical control, resistance mechanisms and possible alternatives / A. Cameron, V. Sarojini // Plant Pathology. – 2014. – Vol. 63, iss. 1. https://doi.org/10.1111/ppa.12066
170. Chiou, C. S. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria / C. S. Chiou, A. L. Jones // J. of Bacteriology. – 1993. – Vol. 175, № 3. – P. 732–740.
171. Innovative Delivery of Cu(II) ions by a nanostructured hydroxyapatite: potential application in planta to enhance the sustainable control of Plasmopara viticola / E. Battiston [et al.] // Phytopathology. – 2019. – Vol. 109 (5). – P. 748–759.
172. Mikiciński, A. Efficacy of fungicides and essential oils against bacterial diseases of fruit trees / A. Mikiciński, P. Sobiczewski, S. Berczyński // J. of Plant Protection Res. – 2012. – Vol. 52, № 4. – P. 467–471.
173. Курилова, Д. А. Сравнительная оценка эффективности тирамсодержащих фунгицидов в отношении бактериоза семян сои / Д. А. Курилова // Рисоводство. – 2021. – Т. 53, № 4. – С. 62–65.
174. Горобей, И. М. Проблема бактериозов растений и подходы к ее решению / И. М. Горобей, Г. М. Осипова // Сиб. вестн. с.-х. науки. – 2017. – Т. 47, № 4. – С. 94–102.
175. Conlin, K. C. Effectiveness of selected chemicals in inhibiting Pseudomonas syringae pv. tomato in vitro and in controlling bacterial speck / K. C. Conlin, S. M. MсCarter // Plant Disease. – 1983. – Vol. 67, № 6. – Р. 639–644.
176. Tarakanov, R. I. Using of essential oils and plant extracts against Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens on Soybean / R. I. Tarakanov, F. S.-U. Dzhalilov // Plants (Basel). – 2022. – Vol. 11 (21). – P. 2989.
177. Seed and soil treatments with a natural fungicide product against some fungal and bacterial diseases of vegetables [Electronic resource]. – Mode of access: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20063209990. – Date of access: 28.04.2023.
178. Identification and characterization of Pseudomonas syringae pv. syringae, a causative bacterium of apple canker in Korea / S. Lee [et al.] // The Plant Pathology J. – 2023. – Vol. 39 (1). – P. 88–107.
179. Carbal, J. P. Mode of antibacterial action of dodine (dodecylguanidine monoacetate) in Pseudomonas syringae / J. P. Cabral // Canad. J. of Microbiology. – 1992. – Vol. 38, № 2. – P. 115–123.
180. Carbal, J. P. Damage to the cytoplasmic membrane and cell death caused by dodine (dodecylguanidine monoacetate) in Pseudomonas syringae ATCC 12271 / J. P. Cabral // Antimicrobial agents and chemotherapy. – 1991. – Vol. 35, № 2. – P. 341–344.
181. Cabral, J. P. Dodecylguanidine monoacetate (dodine) causes severe membrane damage in Pseudomonas syringae above the critical micelle concentration / J. P. Carbal // J. of Basic Microbiology. – 1993. – Vol. 33, № 4. – P. 219–225.
182. Moragrega, C. Evaluation of drench treatments with phosphonate derivatives against Pseudomonas syringae pv. syringae on pear under controlled environment conditions / C. Moragrega, C. Manceau, E. Montesinos // Europ. J. of Plant Pathology. – 1998. – Vol. 104 (2). – P. 171–180.
183. Postiva fungicide technical bulletin [Electronic resource]. – Mode of access: https://assets.greencastonline.com/pdf/media/syng_7180_1_4_Postiva_TechBulletin_final_LR_singles.pdf. – Date of access: 29.04.2023.
184. Miravis® Era Co-Pack. Safety data sheet [Electronic resource]. – Mode of access: https://assets.syngenta.ca/pdf/ca/msds/Miravis_Era_copack_en_sds.pdf. – Date of access: 29.04.2023.
185. Bactericidal compounds controlling growth of the plant pathogen Pseudomonas syringae pv. actinidiae, which forms biofilms composed of a novel exopolysaccharide / S. Ghods [et al.] // Appl. a. Environmental Microbiology. – 2015. – Vol. 81, № 12. – P. 4026–4036.
186. Honório, A. P. Effect of Bayfolan® copper on the control of Pseudomonas syringae pv. garcae in vitro / A. P. Honório, R. R. Goulartm, E. M. Baquião // Rev. Agrogeoambiental. – 2019. – Vol. 11, № 4. – P. 43–51.
187. Javadi-Dodaran, N. Isolation and characterization of bacterial endophytes from weeds against Pseudomonas syringae pv. syringae causing bacterial canker of stone fruit trees / N. Javadi-Dodaran, R. Khakvar, N. Aliasgarzad // Fundamental a. Appl. Agriculture. – 2022. – Vol. 7, № 2. – P. 104–111.
188. Mougou, I. Biocontrol of Pseudomonas syringae pv. syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract / I. Mougou, N. Boughalleb-Mhamdi // Egyp. J. of Biological Pest Control. – 2018. – Vol. 28. – Art. 60. https://doi.org/10.1186/s41938-018-0061-0
189. Wangspa, R. Role of ergosterol in growth inhibition of Saccharomyces cerevisiae by syringomycin E / R. Wangspa, J. Y. Takemoto // FEMS Microbiology Letters. – 1998. – Vol. 167 (2). – P. 215–220.
190. Popović, T. Antagonistic activity of Bacillus and Pseudomonas soil isolates against Pseudomonas syringae pv. syringae / T. Popović // Proc. of the intern. symp. on current trends in plant protection, Belgrade, Serbia, 25–28th Sept. 2012 / Inst. for Plant Protection a. Environment, 2012. – P. 352–356.
191. Конструирование бактериофагового препарата для биоконтроля Pseudomonas syringae в растениеводстве / В. Д. Васильев [и др.] // Вестн. Ульян. гос. c.-х. акад. – 2020. – С. 130–137.
192. Самойлова, А. Бактериофаги Pseudomonas syringae pv. syringae перспективные в подавлении развития бактериального рака плодовых / А. Самойлова // Genetica, fiziologia şi ameliorarea plantelor : VIIth Intern. sci. conf., Chişinău, Moldova, 4–5 octombrie 2021. – P. 327 – 329. https://doi.org/10.53040/gppb7.2021.88
193. Григорцевич, Л. Н. Бактериофаг против возбудителя бактериоза плодовых / Л. Н. Григорцевич, А. Ф. Былинский // Актуальные проблемы биологической защиты растений : материалы науч.-практ. конф., Минск, 12–14 нояб. 1998 г. / М-во сел. хоз-ва и продовольствия Респ. Беларусь, Акад. аграр. наук Респ. Беларусь, Белорус. науч.-исслед. ин-т защиты растений. – Минск, 1998. – С. 46.
194. Григорцевич, Л. Н. Биологические средства в интегрированной системе защиты от болезней семечковых культур / Л. Н. Григорцевич // Эколого-экономические основы усовершенствования интегрированных систем защиты растений от вредителей, болезней и сорняков : тез. докл. науч.-произв. конф., посвящ. 25-летию БелНИИЗР, Минск – Прилуки, 14–16 февр. 1996 г. / Белорус. науч.-исслед. ин-т защиты растений. – Минск, 1996. – Ч. 1. – С. 106–107.
195. Григорцевич, Л. Н. Эффективность лечебных замазок при залечивании ран, вызванных возбудителями раковых заболеваний / Л. Н. Григорцевич, В. Н. Копиця // Современные проблемы плодоводства : тез. докл. науч. конф., посвящ. 70-летию Белорус. науч.-исслед. ин-та плодоводства, Самохваловичи, 9–13 окт. 1995 г. / Мин. сел. хоз-ва и продовольствия Респ. Беларусь, Акад. аграр. наук Респ. Беларусь, Белорус. науч.-исслед. ин-т плодоводства ; редкол.: В. А. Самусь (гл. ред.) [и др.]. – Самохваловичи, 1995. – С. 96–97.
196. Оптимизация технологических параметров культивирования бактериофагов, перспективных для контроля фитопатогенных бактерий рода Pseudomonas / Т. А. Пилипчук [и др.] // Eurasian J. of Appl. Biotechnology. – 2021. – Т. 3. – С. 28–40.
197. Пилипчук, Т. А. Особенности молекулярно-генетической организации Pseudomonas Phage БИМ BV-45 Д / Т. А. Пилипчук, А. Э. Охремчук, Э. И. Коломиец // Вес. Нац. акад. навук Беларусі. Сер. біял. навук. – 2022. – Т. 67, № 2. – С. 190–196.
198. Study on antibacterial effect of essential oils of six plant species against Pseudomonas syringae pv. syringae Van Hall 1902 and Pseudomonas fluorescens Migula 1894 / B. Shabani [et al.] // J. of Plant Pathology. – 2019. – Vol. 101 (3). – P. 671–675.
199. Kokoskova, B. Effectiveness of plant essential oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants / B. Kokoskova, D. Pouvova, R. Pavela // J. of Plant Pathology. – 2011. – Vol. 93, № 1. – P. 133–139.
200. A volatile signal controls virulence in the plant pathogen Pseudomonas syringae pv. syringae and a strategy for infection control in organic farming [Electronic resource]. – Mode of access: https://europepmc.org/article/PPR/PPR215706. – Date of access: 29.04.2023.
201. Коновалова, Н. А. Устойчивость груши к бактериальному раку и парше / Н. А. Коновалова // Защита растений в Республиках Прибалтики и Белоруссии : тез. докл. науч.-практ. конф., 25–26 сент. 1985 г. / Запад. отд-ние Всесоюз. акад. с.-х. наук им. В. И. Ленина [и др.] ; редкол.: В. А. Щербаков (науч. ред. и сост.) [и др.], Таллин, 1985. – Ч. II. – С. 30–31.
202. Susceptibility of European pear cultivars to Pseudomonas syringae pv. syringae using immature fruit and detached leaf assays / C. Moragrega [et al.] // Europ. J. of Plant Pathology. – 2003. – Vol. 109. – P. 319–326.
203. Bedford, K. E. Use of a detached leaf bioassay for screening sweet cherry cultivars for bacterial canker resistance / K. E. Bedford, P. L. Sholberg, F. Kappel // Acta Horticulturae. – 2003. – Vol. 622. – P. 365–368. https://doi.org/10.17660/ActaHortic.2003.622.37
Рецензия
Для цитирования:
Лагоненко В.Ю. Бактериальный рак плодовых растений (Pseudomonas syringae pv. syringae). Плодоводство. 2024;36:126-146.
For citation:
Lagonenko V.Y. Bacterial canker of fruit plants (Pseudomonas syringae pv. syringae). Fruit Growing. 2024;36:126-146. (In Russ.)